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Abstract—Secret key generation by multiple terminals is consid-
ered based on their observations of jointly distributed Gaussian
signals, followed by public communication among themselves. Ex-
ploiting an inherent connection between secrecy generation and
lossy data compression, two main contributions are made. The first
is a characterization of strong secret key capacity, and entails a
converse proof technique that is valid for real-valued (and not nec-
essarily Gaussian) as well as finite-valued signals. The capacity for-
mula acquires a simple form when the terminals observe “sym-
metrically correlated” jointly Gaussian signals. For the latter setup
with two terminals, considering schemes that involve quantization
at one terminal, the best rate of an achievable secret key is char-
acterized as a function of quantization rate; secret key capacity is
attained as the quantization rate tends to infinity. Structured codes
are shown to attain the optimum tradeoff between secret key rate
and quantization rate, constituting our second main contribution.

Index Terms—Linear code, multiterminal Gaussian source
model, nested lattice code, public communication, quantization,
secret key capacity, strong secrecy.

I. INTRODUCTION

I T is well known that separate terminals which observe the
outputs of distinct albeit correlated sources can generate a

secret key (SK) by means of public communication. Specifi-
cally, these terminals are able to generate “common random-
ness” (CR) regarding which an eavesdropper, with access to the
public communication, can elicit only a negligible small amount
of mutual information. This phenomenon, first observed for a
model with two terminals by Bennett et al. [3] and Maurer [16],
followed by Ahlswede and Csiszár [1], has been investigated
further by many researchers. A model that includes a “helper”
terminal observing the output of another source and assisting in
generating SK was investigated by Ahlswede and Csiszár [1],
and by Csiszár and Narayan [8]. These works were followed by
those of Csiszár and Narayan [9], [10], in which SK generation
was studied for models with an arbitrary number of terminals
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and an arbitrary subset of helpers. These models of SK gener-
ation, with all the underlying random variables (rvs) having fi-
nite alphabets, have been referred to broadly as “multiterminal
source models.”

In such a model [9], each terminal observes a distinct compo-
nent of a discrete memoryless multiple source (DMMS). A set
of terminals then wish to generate an SK with the cooperation
of the remaining terminals. To this end, all the terminals are al-
lowed to communicate publicly with each other, possibly inter-
actively in several rounds, over a channel of unlimited capacity.
No rate constraint is imposed on the public communication. We
assume that an eavesdropper has full access to the public intert-
erminal communication, but it is passive, i.e., it cannot tamper
with the public communication. No restrictions are assumed on
the eavesdropper’s computational power. It is supposed further
that the eavesdropper does not possess a wiretapping capability,
i.e., it does not have direct access to a component of the mul-
tiple source; for a survey of wiretap models, see [15]. The SK
capacity—the largest rate at which an SK can be generated—for
a multiterminal source model involving a DMMS is determined
in [9].

The capacity result in [9] reveals an innate connection be-
tween SK generation and lossless distributed data compression
without any secrecy constraints. In particular, consider ter-
minals each observing independent and identically distributed
(i.i.d.) repetitions of finite-valued rvs , respectively.
A set of terminals seek to generate an SK
with the help of the remaining terminals. The SK capacity for
this model equals the difference between the total joint entropy

and the smallest rate of communication which
enables each terminal in to reconstruct near-losslessly all the

components of the DMMS, i.e., for the terminals in to be-
come “omniscient” [9]. The problem of determining the latter
minimum rate is one of multiterminal data compression and
does not involve any secrecy constraints.

The mentioned connection also suggests a means of gener-
ating an SK of optimum rate for this model by decomposing the
problem of SK generation into two parts. First, the terminals
publicly communicate at the most parsimonious rate to enable
all the terminals in to become omniscient. Second, each ter-
minal in generates an SK by extracting from this omniscience
a part that is nearly independent of the public communication,
and of which the eavesdropper has provably little knowledge. It
is also shown in [9], [10] that the SK capacity can be achieved,
based on the decomposition, by noninteractive communication
and without randomization at the terminals.

In this paper, we consider SK generation for a “multiterminal
Gaussian source model” by multiple terminals based on prior
and privileged access to a set of (correlated) jointly Gaussian
signals, followed by public discussion among themselves. A
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characterization of SK capacity is not immediate, in general,
since there is no meaningful analog of the concept of minimum
communication for omniscience; in particular, the minimum
rate of public communication for omniscience is unbounded.
However, from the aforementioned discussion, we can expect
an inherent connection between the problem of SK generation
and lossy data compression, prompting the following natural
questions. What is a characterization of SK capacity for a source
model with memoryless jointly Gaussian multiple sources? Can
an SK of optimum rate be generated using structured codes,
e.g., lattice and linear codes?

This paper makes two main contributions. The first is a char-
acterization of SK capacity for a multiterminal source model
with -valued jointly Gaussian rvs , . This ca-
pacity result, obtained under suitable technical conditions, holds
in a strong sense: the mutual information of the SK and the
public communication vanishes exponentially in signal obser-
vation length. A concept of strong SK capacity was introduced
in [17] in which the mentioned mutual information was required
to decay to 0, while the stronger version we use here was con-
sidered first in [7]–[9]. Our achievability proof is based on a
suitably refined quantization of the signals at the terminals. The
converse proof develops a technique that is applicable to models
with -valued (and not necessarily jointly Gaussian) rvs, as well
as to the finite-alphabet model in [9]. Our general SK capacity
formula acquires a simple form for a mutiterminal Gaussian
source model in which the terminals observe “symmetrically
correlated” jointly Gaussian signals. Our second main contri-
bution involves a model of special interest that consists of two
terminals which observe signals that are a fortiori symmetri-
cally correlated. Considering schemes that involve quantization
at one terminal, we characterize the best rate of an achievable SK
as a function of quantization rate; SK capacity is attained as the
quantization rate tends to infinity. Structured codes are shown
to attain the optimum tradeoff between SK rate and quantiza-
tion rate, constituting our second main contribution. This result
shows how SK rate increases optimally with processing com-
plexity (as measured by quantization rate) [18].

Our general model for SK generation with an arbitrary
number of terminals resembles in structure the discrete mu-
titerminal models considered in [1], [9], and [16]. In particular,
as in the latter models, we too do not impose any explicit
constraints on the rates of public communication. For a discrete
multiterminal source model, SK generation in the presence of
rate constraints on public communication required a separate
analysis, as in [8]. In this study, we have chosen to allow unfet-
tered interactive public communication in order to understand
the connections between SK generation and quantization rates
for analog sources. Theorem 3.1 shows that every SK rate
below SK capacity can be achieved by finite-rate quantiza-
tion of the -valued multiple sources followed by finite-rate
public communication; however, to approach SK capacity,
the public communication rate grows (unboundedly) with the
quantization rate. The question of characterizing the largest
achievable SK rate for our model with public communication
of bounded rate remains open in general. In recent related work
[21], the authors have studied SK generation for two terminals
observing correlated vector Gaussian sources, focusing on

rate-constrained one-way communication from one terminal to
a second terminal.

Our problem formulation is described in Section II, and
the capacity results are proved in Section III. In Section IV,
considering a model with two terminals, we propose a ca-
pacity-achieving algorithm for SK generation based on struc-
tured codes and quantization. We conclude in Section V with
specific open questions that emerge from our study.

II. PRELIMINARIES

We begin with a description of the multiterminal Gaussian
source model for SK generation. Our model builds on the fi-
nite-alphabet model introduced in [9], [10]. Terminals
represent legitimate parties that cooperate in SK generation. We
denote .

Let be -valued jointly Gaussian rvs with

...
... (1)

where with , , . We
assume that is positive definite. It follows that

(2)

for every (nonempty) , where denotes differential
entropy.

Terminal observes i.i.d. repetitions of the rv ,
namely . We use the notation

and .
Following these observations, the terminals are allowed to
communicate over a public noiseless channel of unlimited
capacity, possibly interactively in multiple rounds. We assume
without loss of generality that the public communication,
which can be interactive, takes place in consecutive time slots
in rounds. Specifically, following the formulation in [9],
it is depicted by the mappings with corre-
sponding to the transmission in slot by terminal mod

; we allow to yield any function of the source sequence
observed at terminal and of all previous com-

munication . The corresponding rvs
representing the communication are denoted by ,
with . We denote the communication
collectively by . The goal is for a set of terminals

to generate secret CR with the cooperation of the
remaining terminals in , which is concealed from an
eavesdropper with access to the public communication . This
is formalized next.

Following [9], given , a rv is -recoverable from a rv
if there exists a function that satisfies

.
A function of is -common randomness ( -CR) for a

set of terminals , achievable with communication , if
is -recoverable from , for each .
A function of with values in a finite set constitutes

an -secret key ( -SK) for a set of terminals , achievable
with communication , if is -CR for and, in addition,
has a security index1

1All logarithms are natural.
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(3)

where denotes the cardinality of . Observe that if is an
-SK, then both

(4)

and

(5)

hold so that, with typically being small, is nearly uniformly
distributed and is nearly independent of .

Definition 2.1: A nonnegative number is an achievable
SK rate for a set of terminals if there exist2 -SKs

with values in finite sets that are achievable with
suitable public communication (with the number of rounds
possibly depending on ), such that and

. The supremum of achievable SK
rates for is called the SK capacity . An -SK is termed
a strong SK if vanishes exponentially in ; the corresponding
SK capacity is called the strong SK capacity.

Remark: In the early works on SK generation for source
models, a weaker notion of SK was adopted [16], [1]. In
particular, the corresponding notion of SK capacity therein,
which we term weak SK capacity, is defined as the largest
rate of a sequence of -SKs with being required to satisfy
the weaker condition ; in effect, the secrecy
requirement on the SK is relaxed from that in Definition 2.1 to

.

III. SK CAPACITY

We begin with the observation that the SK capacity will
depend on the joint distribution of only through
the correlation coefficients . Clearly, re-
placing by where (by (1)), , does
not alter SK capacity.

As in [10], for , let

(6)

and be its subset consisting of those that
contain , . Let be the set of all collections

of weights , satisfying

(7)

Theorem 3.1: The (strong) SK capacity equals

(8)

Corollary 3.2: The (strong) SK capacity for a “symmetric”
Gaussian model with

2The requirement is only for an infinite sequence of� (i.e., for infinitely
many �), and not necessarily for all � sufficiently large.

(9)

and with equals

(10)

In particular, for

(11)

Remarks:
1) The formula for SK capacity in Theorem 3.1 has the same

form as that in ([9], Theorem 1) but with differential en-
tropies in lieu of discrete entropies. As such, the terms ap-
pearing in the difference in (8) do not constitute meaningful
analogs of the rate of omniscience and the minimum rate
of communication for omniscience, respectively, unlike in
([9], Theorem 1).

2) As can be gleaned from its proof, Theorem 3.1 holds for
-valued rvs , , that are not necessarily

jointly Gaussian, provided that they satisfy (2) and the
technical conditions (18), (19). Specifically, the achiev-
ability proof holds under (2), (18) and (19), whereas the
converse proof requires only (2).

Proof of Theorem 3.1: The proof of Theorem 3.1
constitutes our first main contribution.

Achievability: The idea is to use scalar quantization of
at terminal followed by SK generation for
the resulting finite-alphabet source model along the lines of [9].
By appropriately choosing the scalar quantizer, the claimed rate
in (8) will be shown to be achievable in the limit of infinite
quantization rates.

In particular, for each positive integer , consider a quantizer
, where

if
if

(12)

At each terminal , consider the -valued rv
, . Define the -valued rv

.
Next, consider a fictitious (finite-alphabet) source model

for “private key” generation with terminals con-
sisting of legitimate terminals that observe, respec-
tively, , and a (compromised helper) terminal

that observes . Now the terminals in the set
seek to generate a private key (PK),

say , with the help of all the remaining terminals including
terminal , using public communication, say , so that
the security condition (3) is satisfied with in the
role of , i.e.

(13)
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Such a PK is concealed from terminal as well as from
an eavesdropper that observes . The corresponding largest rate
of such a PK, namely PK capacity, was characterized in ([9],
Theorem 2); it was shown therein that PK capacity is achievable
by allowing the compromised terminal to fully reveal
its observations prior to public communication by the
various terminals. From [9], the (strong) PK capacity for this
finite-alphabet source model equals

(14)

Returning to the Gaussian model at hand, terminals
can simulate the mentioned model for PK generation by using
the scalar quantizer at each terminal and letting each terminal

reveal publicly the i.i.d. repetitions of the rv ,
. Consequently, in the limit of infinite quantization

(15)

is an achievable (strong) SK rate for the Gaussian model, by
(14).

Next, for a fixed , using (7), we get

(16)

Consequently, we have

(17)

by (16).
We proceed by using the following technical lemma whose

proof is relegated to Appendix A.
Lemma 3.1: For the Gaussian rvs of Theorem

3.1, a quantizer as described in (12), and every
, we get that

(18)

Furthermore

(19)

Continuing with (17) upon using (18) of Lemma 3.1, we get
that for every

(20)

In [9], it was shown using the duality of linear programming that
the minimization on the right side of the expression for the PK
capacity (14) can be taken over a finite subset (of )
that depends only on and . Consequently, the following
achievable (strong) SK rate in (15) can be bounded below further
as follows:

which is (8), where the last-but-one equality above is by (19),
(20) and by the fact that , which does not depend on , is
finite.

Converse: The main technical tools are supplied by Lemma
3.2.

Lemma 3.2: Consider the i.i.d. repetitions of the jointly
Gaussian rvs of Theorem 3.1, namely,

, and let be a rv with a given joint
distribution with .

i) For any
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(21)

ii) For any , any , and any that is
a function of , i.e.,

(22)

Proof:
1) We have

2) We see that

Suppose that represents an -SK for achievable
with (possibly interactive) communication of, say,
rounds (as described in the second paragraph of Section II),
where (see Definition 2.1).

For , by a repeated application of
Lemma 3.2(ii) with , , and in the
roles of , , and , respectively, and the fact that

, we obtain

(23)

Next, for some , let be such that

. Continuing from (23) by using
Lemma 3.2(ii) again but now with and in the roles of
and , respectively, we obtain that

(24)

Consequently, by (24) and (23), we have for every
that

The converse proof is completed by minimization over
.

Proof of Corollary 3.2: For a set ,
, and a permutation of , let

denote . For attaining the
maximum on the right side of (8) for the symmetric Gaussian
model, consider where

the summation is over all permutations of . It is
readily seen that is in . By virtue of the fact that
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depends on only through , it is clear that
also attains the maximum in (8). Note that has the

property that for any , such that .
Consequently, the maximization on the right side of (8) reduces
to

(25)

where for any
with . Let denote the matrix with diagonal

entries being 1 and with all off-diagonal entries being . It now
follows from (8) that

(26)

where by the assumed positive definiteness of
. By monotonicity, the minimum in (26) occurs at ,

from which (10) follows.

IV. TRADING SK RATE OFF QUANTIZATION

RATE BY STRUCTURED CODES

The achievability proof of Theorem 3.1 involves a scalar
quantization of at terminal , , followed by SK
generation for the resulting finite-alphabet source model along
the lines of [9], [10]; SK capacity is attained in the limit of
infinite quantization rate. The SK, extracted from omniscience
at all the terminals in , involves public communication by

said terminals. As underlying the proof of achievability of
SK capacity for the finite-alphabet source model with two
terminals [16], [1], communication from a single terminal,
say terminal 1, suffices to generate an optimum-rate SK from
less-than-omniscience, namely from .

In the context of a Gaussian source model with two terminals,
this motivates the following questions.

1) Supposing that quantization at rate is permitted at ter-
minal 1, what is the largest rate of an SK that can be gener-
ated from the quantized source at terminal 1 and the orig-
inal Gaussian source at terminal 2 using public communi-
cation?

2) Does the rate of the SK thereby generated tend to SK ca-
pacity (by (11) of Corollary
3.2) as ?

3) Can an explicit code structure be identified for quantiza-
tion, communication, as well as SK extraction?

The answers to these questions involve structured codes,
namely nested lattice codes and linear codes, combined with
randomization at the terminals.

Let and be independent - and -valued rvs
with being independent of . For each

, let be a random (vector) quantizer of
rate , where with . Let be the
largest rate of an SK that can be generated from
at terminal 1 and at terminal 2 by public communi-
cation (cf., the second paragraph of Section II, with
and in the roles of and , respectively) among
all choices of , , as above.

Theorem 4.1: For every , we have

(27)
Furthermore, is nondecreasing, concave, and continuous
for , with and

(28)

Remark: The result of Theorem 4.1 cannot be compared
directly with ([21, Theorem 1]). owing to differences in the
specifics of the two respective models. Our model allows unre-
stricted interactive public communication but constrains signal
quantization rate, whereas the latter considers rate-constrained
one-way public communication but without any quantization
restrictions. Also, while our achievability proof involves only
one-way communication, the converse holds for any interactive
communication based on the quantized source at terminal 1 and
the Gaussian source at terminal 2.

It is clear from (27) that is increasing and continuous
for . Furthermore, and

by (11). Concavity follows from the fact that

which is positive and decreasing for , where

(29)
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We present first the converse proof. The proof of achiev-
ability using structured lattice codes and linear codes consti-
tutes a second main contribution of this paper and is presented
in Section IV-B.

A. Converse Proof

The proof uses the following technical lemma, the first part of
which provides an alternative expression for in Theorem
4.1.

Lemma 4.1:
(i) For every , it holds that

(30)

(ii) For each and for every quantizer
where is a finite set and , it holds that

(31)

Proof: Without loss of generality, we assume that
, where is independent of

. Since

it follows that:

(32)

and .

Let be such that and
. We get

(33)

(34)

where (33) follows from the conditional entropy power in-
equality, and (34) follows from:

where the fourth equality is by the fact that and are inde-
pendent.

Following from (34), we have

(35)

(36)

The first inequality follows from (32); the second inequality fol-
lows from . Consequently

To show equality, i.e., to establish (30), we shall select a rv
that satisfies and achieves equalities

in both (33) (and, hence, (35)) and (36). To this end, we shall
find a zero-mean Gaussian rv satisfying ,

and . By the conditional
entropy power inequality, the condition will
give equality in (33) and the condition will
give equality in (36). Specifically, let , where is
independent of and . Clearly,

. Also

Next

The second and last equalities hold since is independent
of and is independent of , respectively. Since

are jointly Gaussian with , is
independent of . Consequently
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again using the independence of and and that of and
. With this choice of , (30) is established.

The proof of part (ii) is similar to the converse proof in [22]
and is given in Appendix B.

Let be an -SK generated by a scheme in Theorem 4.1
using a randomized quantizer of rate at most together with
public communication and randomization , . Then

(37)

(38)

where the first inequality follows from (5); the third in-
equality follows from the fact that is recoverable from

as also from ; (37) follows
from [1, Lemma 2.2] (equivalently, this is tantamount to the
repeated use of Lemma 3.2 (ii) in a manner similar to the
attainment of (23)); and the last inequality follows from the
mutual independence of , and .

Using Lemma 4.1 and the fact that and are
mutually independent, it follows that:

Continuing from (38) using (4), we have

The converse proof is completed by noting that is contin-
uous for .

B. SK Generation Scheme Using Nested Lattice and Linear
Codes, and Achievability Proof

In order to describe our scheme for achieving and,
hence, SK capacity in Theorem 4.1, using nested lattice codes
and linear codes, we first compile pertinent definitions and facts
from [25]. Our scheme and its performance are presented in
Section IV-BI.

Nested Lattice Codes: Definitions and Facts

Definition 4.1: Consider basis (column) vectors
in . An -dimensional lattice code is the set of all integral
combinations of these basis vectors, i.e.

with generating matrix . Clearly,
contains the zero vector in .

1) The Voronoi region of a lattice code , denoted by ,
is the nearest neighbor set of in , i.e.

where denotes Euclidean norm. Let denote the
volume in of .

2) The second moment per dimension of a lattice code , de-
noted by , is

3) The covering radius of a lattice code , denoted by
, is the infimum of all positive numbers such that

, where be the -dimensional sphere with
unit radius.

4) The operation of quantization by a lattice code , denoted
by , is

where ties are broken arbitrarily.
5) The mod operation of a lattice code is

and corresponds to the quantization error.
The following property of the mod operation (cf., [25]) will

be useful:

(39)

A pair of lattice codes , are nested, i.e., , if
there exists an matrix with -valued entries and with

, such that , where and are the
generating matrices of and , respectively. It follows that

.
For , the set is called a coset of

relative to ; there are exactly distinct such
cosets. For belonging to both and , the cosets

and are disjoint. It transpires that we can always
find a set of lattice points of , comprising
all the lattice points of in and some of the lattice points
of on the boundary of such that for distinct ,
the sets are disjoint and furthermore

The set is called a set of coset leaders of relative to
; note that there can be several such sets since the lattice

points of on the boundary of can be selected in many
ways. Upon fixing one such set , the ties of the quantization
operation , , can be broken systematically in a
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unique manner by requiring that co-
incides with the unique coset leader in of the coset containing

.
In the dithered quantization of a source using a lattice code

(cf., [23], [24]), a rv distributed uniformly in its Voronoi region
and independent of the source is added to the source sequence
prior to quantization. This procedure, in effect, decorrelates the
“quantization error” from the source, as formalized in the fol-
lowing result from [23], [24].

Lemma 4.2 [23], [24]: For an -valued rv and any given
lattice code , let be the “dither” rv distributed uniformly in

and independent of . Then, the quantization error
is independent of and is distributed as .

1) Scheme: Our scheme for SK generation consists of two
steps—analog, followed by digital. It is motivated by, and partly
follows, the approach in [25].

Analog Part: In the first (analog) step, terminals 1 and 2 agree
upon three -dimensional nested lattice codes
to be specified later. The following operations are performed on

i.i.d. repetitions , , of ,
where , . We remark that the reason for the use
of i.i.d. repetitions is to obtain strong secrecy in step (D.2)
below.

• (A.1) Dithered quantization at terminal 1: Terminal 1 gen-
erates i.i.d. rvs , , where is uniformly
distributed in , and are mutually
independent. This is followed by dithered quantization of

, , and a mod operation of the lattice
code to yield

(40)

for to be specified later. Each takes values in
the set of coset leaders of relative to , denoted by ,
where . The associated quantization rate is

.
• (A.2) Public communication from terminal 1 to terminal 2:

Terminal 1 computes

(41)
since , and publicly communicates

to terminal 2. Observe that
each takes values in the set of coset leaders of rela-
tive to , denoted by , with .

• (A.3) Reconstruction of quantized rvs at terminal 2: Ter-
minal 2 reconstructs as , , where

(42)
For and an arbitrary but fixed , we select as

(43)

whereby

(44)

Our following main technical lemma summarizes the out-
come of the first step of the algorithm.

Lemma 4.3: For , let

(45)

with as in (29). For every and all sufficiently large,
there exist -dimensional nested lattice codes
such that, for

(46)

(47)

and

(48)

Digital Part: Before describing the second (digital) part, we
note that the (finite) set in step A.1 can be shown to be in 1–1
correspondence with a (finite) field through a mapping
(see Lemma 4.4 and Appendix C); the rvs then will take
values in , . The Digital Part of the scheme
entails the following.

• (D.1) CR generation at terminals 1 and 2 by Slepian-Wolf
data compression: The i.i.d. sequence ,

, at terminal 1 is reconstructed near-losslessly at
terminal 2 with , , as side information
using Slepian–Wolf data compression. This reconstruction
is performed with decoding error probability vanishing
exponentially in . Specifically, a linearly encoded
Slepian–Wolf codeword is transmitted publicly,
where and is a matrix
with entries taking values in . Terminal 2 produces an
estimate

based on the codeword and the side information

The rate of the codeword is

by Fano’s inequality since, from (47),
.

• (D.2) SK generation by a linear operation on CR: Finally,
terminals 1 and 2 generate an SK , by means of a linear
operation on the CR , viz., , with
having entries in , of rate arbitrarily close to

the optimum tradeoff between SK rate and the quantization
rate in Theorem 4.1.

2) Proof of Achievability of : Using the two-step
scheme of the previous section, we show that for any
and any (cf., Theorem 4.1), there exist -di-
mensional nested lattice codes , mapping

and matrices , , such that the scheme produces a rv
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of rate arbitrarily close to from which a strong SK
can be extracted of rate arbitrarily close to

.
Without loss of generality, we can write

(49)

where is independent of and consists of i.i.d. repetitions
of the rv with so that, from
(44), can also be written as

(50)

Further, is taken to be independent of and, hence, of
. A main step in the proof of achievability of

is the proof of Lemma 4.3.
Proof of Lemma 4.3: We suppress the symbol . The proof

relies on the existence of three “good” -dimensional nested lat-
tice codes with the properties stated in Lemma
4.4; the proof of existence is obtained by suitably generalizing
ideas from [13], and is given in Appendix C.

Lemma 4.4: (“Good” Lattice Codes): For each and
, let and as in (45), (43). For

every and all sufficiently large, there exist -dimen-
sional nested lattice codes with

(51)

(52)

(53)

(54)

and

(55)

Upon using such “good” lattice codes, the claimed rates in
(46) follow from (51). We next consider (47). By (41), upon
using (39), we get

where is a quantization error with
respect to . Therefore, from (42)

Defining the event , we see that in

so that . Now, observe that is conditionally
independent of conditioned on , , which,
combined with the independence of and , gives that is
independent of . Further, is distributed as by Lemma 4.2
and is independent of , so that

by Lemma 4.4, thereby establishing (47).
In order to establish (48), the idea is to show that serves

as a codeword of an optimum Gaussian rate distortion code for
the source , with CR at the encoder and decoder. Since
can be selected to have rate arbitrarily close to , it will pos-
sess the mentioned attribute if there exists a decoder for recon-
structing from with mean-squared error distortion

. Then, with (independent of ) being known to
the encoder and decoder, the codeword —at optimality—must
be nearly independent of and nearly uniformly distributed,
thereby establishing (48). First, we show that upon using the
nested lattice codes above with a suitable decoder, we can re-
construct from with the aforementioned distortion.
To this end, consider the decoder, that reconstructs as

where is to be chosen later so as to minimize the mean-
squared error distortion.

Using (39), we have

so that . Observe next that by
Lemma 4.2, is independent of and is distributed as ,
and hence by (53)

(56)

It readily follows, as shown in Appendix E, that

(57)

The significant sum on the right side above is minimized by the

choice by (44), and so

(58)

Now we are ready to prove (48). With
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(59)

where the second equality is by the independence of and ;
the first inequality follows from being a function of and

; the second inequality is from having independent com-
ponents; and the last inequality is by the convexity of .
Finally, combining (58) and (59), and noting that is non-
increasing and uniformly continuous, we get

which is (48).

Continuing with the proof of achievability of , fix
and , the latter to be specified later. For every and
all sufficiently large, Lemma 4.3 provides for the existence of

-dimensional lattice codes such that

(60)

(61)

and

(62)

By Fano’s inequality and (60), (61)

(63)

where is the binary entropy function. With being a
-valued mapping in the Digital Part in Section IV-BI, the

existence of the matrix follows from [6, Theorem 1] on
the adequacy of linear encoding for the Slepian–Wolf data
compression of the i.i.d. rvs , , with de-
coder side information , , and decoding
error probability vanishing to zero exponentially in . Specif-
ically, from [6, Theorem 1] and using (63), there exists a

-matrix with -valued entries
such that can be reconstructed from and

with the probability of decoding error vanishing expo-
nentially in .

It remains to show the existence of a matrix with the as-
serted property. To this end, we shall use Lemma 4.5 whose
proof is provided in Appendix D

Lemma 4.5: Let be a rv with values in a Galois field
and let be an -valued rv (with or without a density with
respect to the Lebesgue measure). Consider i.i.d. repetitions
of , namely ,
and let be a finite-valued rv with a
given joint distribution with . Then, for every
and every , there exists a

matrix with -valued entries such that
vanishes exponentially in .

Apply Lemma 4.5 with , , and
with

and consequentially, using (62)

(64)

if (the yet unspecified) is chosen to be sufficiently small.
Hence, Lemma 4.5 gives that there exists a matrix such that
for of range

(65)

and vanishes exponentially in
. Since was arbitrary, the rate of , and hence ,

can be chosen arbitrary close to , and the rate of can
be chosen arbitrarily close to for all sufficiently large.
This completes the proof of achievability of .

V. DISCUSSION

One main contribution of this paper is the converse proof of
the SK capacity in Theorem 3.1; in fact, this proof applies even
when the signals observed by the terminals are i.i.d. repe-
titions of the -valued (and not necessarily jointly Gaussian)
rvs , , provided that condition (2) is met. Our
proof technique, which differs from the entropy decomposition
approach in [9] for counterpart finite-valued rvs, can be used for
the latter as well upon replacing differential entropy by its dis-
crete counterpart. A characterization of SK capacity in a general
setting in which the collection of rvs can
have mixed alphabets remains open.

Turning to the two-terminal Gaussian model in Section IV,
the choice of quantization at just a single terminal was moti-
vated by the study of SK generation for a discrete model in [10]
where it was shown that an optimum-rate SK could be generated
as a function of the signal observed at any particular .
Thereupon, we show in Theorem 4.1 that such quantization of
rate at terminal 1 alone enables the attainable of a maximum
SK rate which tends to SK capacity as . Other
models with quantization can be studied. For instance, quanti-
zation can be considered at both the terminals with constraints
on the individual rates or the sum rate. In the latter case, under
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a sum rate constraint , clearly the best attainable SK rate is no
smaller than . Can it be larger?

Another direction entails an extension of the formulation
of Theorem 4.1 to Gaussian models with an arbitrary number

of terminals; the resulting model will involve quan-
tization at one terminal in the secrecy-seeking set , say
terminal , with randomization allowed at all the terminals. In
particular, following the paragraph preceding the statement of
Theorem 4.1, the model under consideration can be described
as follows. Let be a -valued rv, , with

being mutually independent. For each
, let be a random (vector) quantizer

at terminal of rate , where with .
Let be the largest rate of an SK that can be generated
from at terminal and at each of the
other terminals . A characterization of the optimum
tradeoff , and devising algorithms for SK generation that
attain , constitute open problems. Similarly as in Theorem
4.1, these questions are connected to problems in multiterminal
Gaussian lossy data compression (cf., e.g., [20]).

APPENDIX A

1) PROOF OF LEMMA 3.1: We have

(66)

(67)

which as , where in (66) is the largest
eigenvalue of and in (67) is a constant that depends only
on . This establishes (19).

Next, for each , observe that

(68)
Further, for any collection of integers ,

, , let . It now
follows by the uniform continuity of the density function
of and the mean-value theorem that for any , there exists

satisfying , so that
. Consequently

Hence

Taking limits as , we obtain (18); this concludes the
proof of Lemma 3.1.

APPENDIX B

1) PROOF OF LEMMA 4.1: PART (II): Note that
and ,

where , , are i.i.d. repetitions of the
jointly Gaussian rvs with both means being zero and
with correlation coefficient

(69)

where , .
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Next

(70)

where the last equality is from

by the assumption that , , are i.i.d.
Let . Then

(71)

by the assumption that , , are i.i.d., so
that . Consequently, from (69) and (30),
we get

(72)

and, from (70), we get

(73)

Continuing from (72), we have

where the second inequality is by the concavity of and the
last inequality is from (73) and the fact that is increasing.

APPENDIX C

1) PROOF OF LEMMA 4.4: We shall need the following
concepts from [25].

Definition C.1: The effective radius of an -dimensional
lattice code , denoted by , is the radius of an -dimen-
sional sphere with the same volume as the Voronoi region of the
lattice code.

Definition C.2: A sequence of lattice codes is good for cov-
ering if the ratio of its covering radius to effective radius ap-
proaches 1 as the dimension of the lattice codes tends to .

Definition C.3: Let and let be i.i.d.
repetitions of . For each , a se-
quence of lattice codes is said to be exponentially good for
AWGN channel coding (without power constraint) for noise
and with parameter if there exists a mapping such that

for every

and

The exponent of the error probability can be
expressed in terms of the ratio, , of the effective radius of
the lattice code to the (approximated) radius of the Gaussian
noise vector . In [19], the existence is shown of a se-
quence of lattice codes with the property that

and

where is the Poltyrev exponent given by

Observe that the properties of being good for covering,
and being exponentially good for AWGN channel coding and
achieving the Poltyrev exponent, are invariant under scaling.
To prove the existence of nested lattice codes with the required
properties, we shall use the results of [13] where a random
lattice ensemble is constructed from a random linear code
by the following procedure described in Definition C.4. (The
construction is known as Construction A in the theory of
lattices, see, e.g., [5].) The random lattice ensemble is denoted
by , where is a sequence of primes and is the
ensemble of uniform random linear code over .

Definition C.4:
1) Let denote the uniform random linear code

ensemble over . Specifically, the random generating
matrix of the code in the ensemble is obtained by
drawing each element of independently and uniformly

from and letting , where all
the operations are over (i.e., modulo- ).



3386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

2) Transform each codeword of into a point in
by dividing all the coordinates by . Denote such a

random constellation by .
3) Replicate over all of by performing .

It is easy to check that is indeed a lattice.
Note that if is nonsingular, then the volume of the Voronoi

region is . The probability of being singular can
be easily shown to be at most (see [13, eq.
(24)]). Following [13], we shall consider only lattice ensembles
such that for some , so that this men-
tioned probability goes to zero in at least exponentially ( may
also grow with ). Consequently, there is a relation among the
parameters , , and for typical lattice codes in
the ensemble which can be stated as

(74)

where denotes the volume of the ball of radius
in .

As in [13], we shall hold approximately constant as
. (Since is prime and is an integer,

cannot be a constant.) For a suitably chosen , it suffices to
pick such that as defined in (74) satisfies, for all
sufficiently large

(75)

for a constant . By the fact that for some ,
it transpires that for a fixed and for all sufficiently large
there exist a prime and satisfying both (74) and
(75). The results in [13], restated later as Lemmas C.1 and C.2,
give constraints on the ranges of and of the random
lattice ensemble , with appropriately picked as
earlier, such that with probability approaching 1, a lattice code
in the ensemble has full dimension and is good for covering or
is exponentially good for AWGN channel coding, respectively.
These constraints are summarized next.

Lemma C.1: (Goodness for covering) [13, Theorem 2]: For
any fixed such that and any such that

, for some , let and be
such that both (74) and (75) are satisfied (for all sufficiently
large). Then, for such parameters , with proba-
bility approaching 1, the random lattice code in the lattice en-
semble is good for covering and has dimension
exactly .

Lemma C.2 (Exponential goodness for AWGN channel
coding achieving the Poltyrev exponent evaluated at ) [13, Th.
4]: For any fixed such that
and any such that for some , let
and be such that both (74) and (75) are satisfied for all

sufficiently large. Then, for such parameters ,
with probability approaching 1, the random lattice code in the
lattice ensemble is exponentially good for AWGN
channel coding and for achieving the Poltyrev exponent evalu-
ated at , and has dimension exactly .

Our next lemma is a consequence of Lemmas C.1 and C.2.

Lemma C.3: For any , , , , and ,
there exists a sequence of three-level nested lattice codes

such that and

. Furthermore, is good for covering with second
moment per dimension and (resp. ) is exponentially
good for AWGN channel coding and achieving the Poltyrev ex-
ponents evaluated at (resp. ), respectively.

Proof of Lemma C.3: We shall consider the nested ensem-
bles of lattice codes

, where denote the nested
uniform random , , and linear
codes over , respectively. In particular, we first draw a uni-
form random matrix (with entries taking values uni-
formly and independently in ) to be the random generating
matrix of . Then, the first , rows of the random
matrix constitute the random generating matrices of , , re-
spectively. It is then left to pick ap-
propriately to obtain the required nested lattice codes.

To this end, we first select
. Next, we select

small enough and so that
and . We then select as

growing linearly in , say . Then, and are
constrained by the ratios of the volumes of the Voronoi regions
of the three lattice codes, namely

and . Finally, we shall select
a prime number so that .
Observe that this selection is possible for every large
enough . To see this, let satisfy (74) for a radius

, i.e., . From (74) and by
, our claim is true if we can

find a prime . Since ,
it follows that there exists such a prime for every large
enough , because there is a prime number between
and for every integer (Bertrand’s postulate, see, for
instance, [14]). By (74), the choice of above and
the fact that , it is clear that

grows subexponentially in . It then follows, for all
sufficiently large, by the manner of selection of ,

, , and that and
. It is clear that

satisfies the constraints in Lemma C.1 for to be good
for covering, and , satisfy the
constraints in Lemma C.2 for , to be exponentially
good for AWGN channel coding and achieving the Poltyrev
exponent evaluated at , , respectively. Specifically, by
Lemmas C.1 and C.2, we have that the events

and
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satisfy , , and
, respectively. Consequently

Therefore, there exists a sequence of three-level nested lattice
codes such that is good for covering,
and , are exponentially good for AWGN channel
coding and achieving the Poltyrev exponents evaluated at ,

, respectively. The claims regarding the ratio of volume
of the Voronoi region of to that of and the ratio of
volume of the Voronoi region of to that of follow from

, and
the fact that grows subexponentially, respectively. Finally,
we shall scale all lattice codes so that the second moment per
dimension of is .

Now, returning to Lemma 4.4, we have the following next
step.

Lemma C.4: For and an arbitrary but fixed ,
let be as in (43). Then, for any and any

, there exists a sequence of nested lattice codes
such that , is good for covering

(76)

(77)

(78)

and

(79)

Proof of Lemma C.4: Let be sufficiently close to 1
such that and . By Lemma C.3,
there exists a sequence of nested lattice codes
such that

(80)

is good for covering with second moment per dimension ,
and , are exponentially good for AWGN channel coding
and achieving the Poltyrev exponent evaluated at , , respec-
tively, where

(81)

It is then left to prove (78) and (79) for the sequence of nested
lattice codes .

First, we claim that

(82)

The normalized second moment of , denoted by
, is defined as (see, e.g., [5])

(83)

It is known that the normalized second moment is invariant
under scaling and that the normalized second moment of a
sphere, denoted by , converges to as (see, e.g.,
[5]). By the fact that is good for covering, we have that (see
[13, Proposition 1])

(84)

Then, (82) follows from , (83), and (84).
The following lemma, from [12, Lemmas 6 and 11], gives

upper bounds for the two probabilities in (78) and (79) in terms
of those for i.i.d. Gaussian rvs with asymptotically equal vari-
ances per source symbol.

Lemma C.5 [12]: If is good for covering and
, then there exist and depending only on and

tending to 0 and 1 in , respectively, such that

and

where and are i.i.d. repetitions of
and

rvs, respectively. Specifically

and

Resuming the proof of Lemma C.4, let denote the the ratio
of the effective radius of to the approximated radius of the

Gaussian rv , i.e.

(85)

and let denote the ratio of the radius of to the approxi-

mated radius of the Gaussian rv ,

i.e.

(86)

where is the volume of the ball in of radius 1, and

hence, from (74), (see, e.g.,
[5]).

Using (82), it follows from (80) that
and .
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Consequently, for all sufficiently large, we get from (81) and
(85) that

(87)

and, from (81) and (86) that

(88)

Let and be i.i.d. repetitions of
and rvs, respectively. From Lemma
C.5, (87), (88), and the fact that , are exponentially good
for AWGN channel coding and achieving the Poltyrev exponent
evaluated at , , respectively, for all sufficiently large

thereby establishing (78) and (79).

All assertions in Lemma 4.4 except for (55) follow from
Lemma C.4 by noting from (44) and (50) that

To see (55), note that we have shown that .
Consequently

By the fact that is good for covering, i.e.

we get

APPENDIX D

1) PROOF OF LEMMA 4.5: Consider a random
matrix with entries taking values mutually independently and
uniformly in , i.e., is uniformly distributed on the set of all

matrices with -valued entries. Further,
assume that is independent of , and hence, the
average of over the set of all matrices

can be written as .

The proof of Lemma 4.5 involves a series of steps that result
in successive lower bounds for , yielding
eventually that under the assumptions of the lemma

(89)

for an exponentially vanishing , whereupon the assertion of
the lemma follows. These steps in the proof will follow, in a
similar manner, the recipe in the proof of [18, Lemma 7] which
established an analogous version of Lemma 4.5 but with an extra
assumption that is also a finite-valued rv.

Note that the set of all matrices with -valued en-
tries correspond, in a one-to-one manner, to the set of all linear
functions . Let denote a rv distributed
uniformly on . Then, it holds for any , ,
that

(90)
For a set of functions, not necessarily linear, with a common

domain and a common range, this very property (90) of the set
that for a random function distributed uniformly on the set, the
reciprocal of the cardinality of the size of the common range
equals the probability that the two values of the random func-
tion applied to any two distinct inputs coincide is referred to as
the “universal” property in [2], and is used therein to prove the
following result.

Lemma D.1 [2, Th. 3]: For a finite-valued rv , let
be the rv uniformly distributed on a universal set of functions
from to a finite set . Then, it holds that

where

(91)

The proof of Lemma 4.5 relies, additionally, on the following
three lemmas; the first two of these lemmas are new with their
proofs being relegated to the end of this appendix, while the
third lemma was shown in [4].

Lemma D.2: For , let

where and , ,
is the conditional pmf of conditioned on . Then,

, for some .

Lemma D.3: For , let
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Then, for some

. Furthermore, for every in a subset of of
-measure 1, it holds that3

for all sufficiently large.

Lemma D.4 [4]: Let and be finite-valued rvs, and let
be given. Then

Fix . By Lemma D.4, for every , we get (92),
shown at the bottom of the page.

Then, with denoting the special subset
from Lemma D.3 of -measure 1, we have that (93),
shown also at the bottom of the page, holds for all
sufficiently large, where

By Lemma D.1, for satisfying condition (93), we have

(94)

Since

and furthermore by (93), (94)

(95)

for all sufficiently large, we obtain that

(96)

3Here, � �� �� � � � �� �� � � � ���� is computed ac-
cording to (91) but with the conditional pmf of � conditioned on
�� � � � �� �� � � � ���� instead of according to its marginal
probability.

for all sufficiently large.
Upon selecting sufficiently small and such that

we obtain from (96) that

(97)

for some . This proves (89) and, hence, the assertion of
the lemma.

Proof of Lemma D.2: Let ,
, where are i.i.d. repetitions of .

Observe that and ,
where .

Then, from [11, Th. 2.2.3], we have that for

where

and

As in [11], we define . Next, we have

In addition, because , is nonde-
creasing. We then have that is in the interior of . It
follows from [11, Lemma 2.2.5(b)] that and
that is nonincreasing for . Consequently

(92)

(93)
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Also, from [11, Lemma 2.2.5(c)]. and the fact that 0 is in
the the interior of , is differentiable at
and . It suffices to prove that for

, . Suppose this
is not the case, i.e., there exists such that

. Then, from the definition of , it is
necessarily true that for every , .
Consequently

thereby contradicting the fact that . This com-
pletes the proof of Lemma D.2.

Proof of Lemma D.3: We have

On the right side above, the by Lemma
D.2, while the second term for some

. Thus, , which
is the first assertion of the lemma.

Next, for every

Hence, for every , it holds that

thereby establishing the second assertion of the lemma.

APPENDIX E

1) PROOF OF (57): Denoting
, we have that by (56). Then

where the second equality is by that fact that in ,
; the two inequalities above are by

the triangle inequality and the Cauchy–Schwarz inequality,
respectively. Next

where the first and the last inequalities are by Minkowski’s in-
equality; the second inequality is from

The last equality is a consequence of the components of
being i.i.d. Gaussian rvs and taking values in that is
covered by a ball of radius in (55). Consequently, we
have
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